View Issue Details

IDProjectCategoryView StatusLast Update
0003845CaseTalk ModelerGeneration (SQL, XML, etc)public2023-02-15 17:09
ReporterBCP Software Assigned ToBCP Software  
PrioritynormalSeverityfeatureReproducibilityhave not tried
Status resolvedResolutionfixed 
PlatformIntelOSWindowsOS Version11
Target Version12.7Fixed in Version12.7 
Summary0003845: Generate SpaCy training data
DescriptionTo support NLP with SpaCy, it would be helpful to train the models with facts from FCO-IM. Once trained, the SpaCy modules could be used to parse other body of texts.
Additional Information

import spacy
from spacy.tokens import DocBin

nlp = spacy.blank("en")
training_data = [
  ("Tokyo Tower is 333m tall.", [(0, 11, "BUILDING")]),
]
# the DocBin will store the example documents
db = DocBin()
for text, annotations in training_data:
    doc = nlp(text)
    ents = []
    for start, end, label in annotations:
        span = doc.char_span(start, end, label=label)
        ents.append(span)
    doc.ents = ents
    db.add(doc)
db.to_disk("./train.spacy")
TagsNo tags attached.
CaseTalk Editionunknown

Relationships

related to 0001718 assignedBCP Software Support Natural Language Processing (NLP) 

Activities

BCP Software

BCP Software

2023-02-15 17:09

administrator   ~0004784

This feature is added to the "File\Export\.." Menu.

Issue History

Date Modified Username Field Change
2023-02-10 11:33 BCP Software New Issue
2023-02-10 11:33 BCP Software Status new => assigned
2023-02-10 11:33 BCP Software Assigned To => BCP Software
2023-02-10 11:33 BCP Software Relationship added related to 0001718
2023-02-15 17:09 BCP Software Status assigned => resolved
2023-02-15 17:09 BCP Software Resolution open => fixed
2023-02-15 17:09 BCP Software Fixed in Version => 12.7
2023-02-15 17:09 BCP Software Note Added: 0004784