Integrated Tool Support for the Datawar ehouse L ifecycle

Elton Manoku Guido Bakema

e.manoku@ft.han.nl quido.bakema@wxs.nl

HAN University HAN University

Business and Competence Center Informatics Communication Academy
P.O. Box 2217 P.O. Box 2217

NL-6802 CE Arnhem NL-6802 CE Arnhem

The Netherlands The Netherlands

Phone: +31(0) 26 365 81 52 Phone: +31(0) 26 365 81 52

Fax: +31(0) 26 365 81 26 Fax: +31(0) 26 365 81 26

Abstract. In operational practice, datawarehouses are big corporate databases that are continuously under development. Thisimplies
adynamic increase of the complexity of the data. For controlling this complexity, a conceptual model driven approach is
recommended in order to guarantee that the relation to the business environment can be validated at any moment. To keep

maintai nabl e the connection between the conceptual model and the logical/physical aspects of the datawarehouse and related data
marts, bridges are needed that can provide the needed model-to-model conversion at any desired moment. To achieve this, a bridge-
toolset is designed and developed which is based on a single point of definition metadata philosophy. The philosophy and the way of
working are developed in aresearch project at HAN University in The Netherlands in co-operation with the Dutch system house
Atos Origin to overcome datawarehouse life cycle maintenance problems in the Royal Dutch Airlines (KLM).

1 Introduction

Section 1.1 gives a short introduction to the conceptual modeling method FCO-IM (Fully Communication Oriented
Information Modeling) used for constructing the conceptual layer of a datawarehouse in the form of an FCO-IM
information grammar. The conceptua layer isthe starting point for all further data models playing arole in the
datawarehouse lifecycle. Section 1.2 gives an impression of the transformation of these conceptual FCO-IM
information models to the logical and physical layers.

1.1 Introduction to Fully Communication Oriented Information Modeling

In this short introduction, the main concepts and terminology of FCO-IM *2 are only touched upon. FCO-IM is afact-
based information modeling method that originates from NIAM 3. The analysis takes place in a dialogue between the
analyst and an expert user, who is requested to verbalize facts and express them through fact stating sentences (fact
expressions). These fact expressions are classified and qualified and the type level result with constraints added is called
an FCO-IM information grammar that can be visualized as an FCO-IM information grammar diagram. The
classification and qualification is, apart from extending the soft semantics (predicates and type level naming), the main
source for hard semantics (structural and integrity aspects of the model) for the information grammar. More hard
semantics are added in the form of constraints (like uniqueness constraints, total role constraints and so on). The
resulting information grammar (1G) is stored in a standardized FCO-IM repository and presented in one or more related
information grammar diagrams (IGD’ s) that are self-synchronizing auto-visualizations of the repository population.

In the following Floors & Rooms example (see figure 1) elementary facts are considered. Using elementary fact
expressions has many benefits. The most important one is that it guarantees redundancy freeness. The resulting
information grammear is called an elementary information grammar (EI-1G).

Figure 1: Floors & Rooms sample fact expressions

"Floor 1 exists." "Room 2.1 has 20 seats."

"Floor 2 exists." "Room 1.1 has 17 seats."

"There are 2 emergency exits on floor number 1." "Room 2.1 is equipped with aPC."
"There are 0 emergency exits on floor number 2." "Room 1.1 is equipped with aPC."
"Thereisaroom 2.1." "We have PC’'s available."
"Thereisaroom 1.1." "We have LCD’s available."

"Thereisaroom1.2."

Integrated tool support for the Datawarehouse Lifecycle
The diagram (EI-1GD) of the resulting elementary information grammar (EI-1G) is shown in figure 2.

Figure 2: Floors & Rooms EI-1IGD

FLOOR NUMBER

FLQOR EMERGENCY EXITS

3\ 2 [T e

O1_ 'floor numbey/<3>* F1:"There are <1> exts on <2>."
03:3>' 1 1 2

2 0

W ROl NiMBER CAPACITY

F2:"<4> has <5> seats."
1 21 20
2: 11 17
FACILITY
F4™Fhere
02:'room <6>.<7>' EQUI PM ENT
1: 1 2 —
2: 2 1
3 1 1

F3:"<8> is equipped with a <9>." 'We have <10>'s
1 21 PC
2: 11 PC
1 PC
2. LCD

Applying the FCO-IM Group & Reduce agorithm to the elementary information grammar (El-1G) resultsin a grouped
and reduced information grammar (GR-1G). See figure 2 for the corresponding diagram (GR-IGD).

Figure 3: Floors & Rooms GR-IGD

TI
ny
®)
®)
Py

" number <3>."
03:'<3>'

FACILITY CODE

FACILITY

EQUIPMENT

—OFSEAT:

5 o

6 | 7

F2 ™Ream <6>.<7> has <5> seats F3:"<8>is equipped witha<9>." F5\"We hawe <1@>'s
F4 :"There is aroom<6>. " 1 21 pC aai Y
02:'room<6>.<7> > 1:1 pC 04 :'<10>'

1 1 2 - 1 PC

2: 2 1 20 2. LCD

3 1 1 17

The Group & Reduce algorithm brings fact types together as much as possible without introducing redundancy. In other
words, starting from the elementary information grammar, this process gives a normalized model of the information
grammar with a minimum number of fact types. From this grouped and reduced information grammar, fact sentences
can till be reproduced.

Applying aso (in between or afterwards) the Lexicalize algorithm results in a grouped, lexicalized and reduced
information grammar (GLR-1G). See figure 4 for the diagram (GLR-IGD).

From all these FCO-IM information grammars (EL-1G, GR-1G, GLR-1G) the fact sentences can be regenerated.

Integrated tool support for the Datawarehouse Lifecycle 3

Figure 4: Floors & Rooms GLR-IGD

F1:"There are <1> exts on floor
number <3>."

————FAGH,ITY CODE

EQUIPM ENT FACILITY
<2 D,
[81]82] 9 | 10
F2:"Room <6>.<7> has <5> seats." F3:"Room <8.1>.<8.2> is equipped with a F5:"We hawe <10>'s
F4:"Thereis aroom<6>.<7>." <9>" available.”
1: 1 2 - 1: 2 1 PC 1: PC
2: 2 1 20 2: 1 1 PC 2: LCD
3 1 1 17

To support thisway of working with different co-existing and related FCO-IM models and keeping synchronization
between them, a consistent repository-based approach is used. Every FCO-IM model (El-IG, GR-IG, GLR-IG) existsin
ageneric repository and the GLR algorithms are just reading and updating this FCO-IM repository that is used by FCO-
IM supporting CASE-tools like FCO-IM Casetool* and CaseTalk®, which are widely in usein the Netherlands in the
academic world and in industry.

1.2 Unmasking the Conceptual M odels

Essentialy, the GLR-IGD of figure 4 aready is a Relational Schemain BCNF. Database administrators might like to
seethat in amore familiar representation. The GLR-1GD must, so to speak, drop its FCO-IM mask and present itself
more openly as a Relational Schema. Apart from the GLR algorithms, also the Relational Model (RM) unmasking
algorithm isimplemented in FCO-IM supporting tools. Because all soft semantics are stored, fact type expressions (i.e.
fact expressions at type level) can be generated along with the resulting Relational Schema as well, providing hard
semantics as well soft semantics.

The GR-IGD of figure 3 is essentialy an Entity-Relationship diagram (ERD). The ER demasqué algorithm converts a
GR-1GD into an ERD in amore familiar Entity-Relationship notation. See figure 5 where the Information Engineering
syntax is used.

Figure5: Floors & Rooms ERD

FLOOR

NUMBER_ OF EXITS NUMBER <M> FACILITY
FLOOR NUMBER <pi> FLOOR_NUMBER <M>

FACILITY CODE <pi> FACILITY_CODE <M>

isequipged with a

ROOM
NUMBER_ OF SEATS NUMBER
ROOM NUMBER <pi> ROOM_NUMBER <M>

The UML unmasking algorithm converts a GR-IGD into an UML Class Diagram. See figure 6.

In both cases the sentences cannot be presented any more along with the diagrams, but they are till present in the form
of comments or descriptionsin structure elements, nor can a population be presented. In the case of a Class Diagram, an
object diagram can present the population. Within ER and UML tools, then, a physical model and Relational and OO
data definition scripts can easily be generated for Relational and OO platforms.

Integrated tool support for the Datawarehouse Lifecycle 4

Figure 6: Floors & Rooms UML Class Diagram

FLOOR FACILITY
- FLOOR NUMBER vint - FACILITY CODE : string
- NUMBER_OFEXITS :int + GetFACILITY CODE () - string
+ GetFLOOR NUMBER () tint + GetEQUIPMENT_ROOM () : ROOM
+ GetNUMBER_ OF EXITS () vint + SetFACILITY CODE (string NewFACILITY CODE) : void
+ SetFLOOR NUMBER (int NewFLOOR NUMBER) :void + SetEQUIPMENT_ROOM (ROOM NewEQUIPMENT) : void
+

SetNUMBER_ OF EXITS (int NewNUMBER_ OF EXITS) : void
0.
1.81 o

ROOM
- NUMBER_ OF SEATS :int
- ROOM NUMBER sint
+ GetNUMBER_ OF SEATS () sint
+ GetROOM NUMBER () sint
+ GetEQUIPMENT_FACILITY () : FACILITY
+ GetROOM_FLOOR_6_FLOOR () : FLOOR
+ SetNUMBER_ OF SEATS (int NewNUMBER_ OF SEATS) : void
+ SetROOM NUMBER (int NewROOM NUMBER) : void
+ SetROOM_FLOOR_6_FLOOR (FLOOR NewROOM_FLOOR_6) : void
+ SetEQUIPMENT _FACILITY (FACILITY NewEQUIPMENT) :void

2 AnlIntegrated Toolset for Datawar ehouse Design

In section 2.1 the datawarehouse life cycle is characterized and challenges are discussed. Section 2.2 introduces a
Metadata Framework that was designed to master these challenges. Section 2.3 presents a supporting tool-set that can
help to deal with the challenges in big datawarehouse projects. The most important one is atool for automated
conversion of normalized models into dimensional models. Section 2.4 ends with the general architecture of the
supporting tool-set.

2.1 Challengesfrom the Datawarehouse World

The datawarehouse lifecycle process starts with interviewing future datawarehouse users and gathering information
about source systems. Thisis followed by the analysis and the design of the datawarehouse. The next stage isthe
implementation, including designing and implementing the ETL process, data marts design and generation and
development of OLAP applications. Eventually these are put in use in order to provide the desired business intelligence.
This process looks rather straightforward, but in general it is not. There are many challenges. Finding equilibrium
between user demands and the source systemsinvolves quantitative (many fact types) and qualitative (integrating
domain area’ s) complexity. The transformation towards dimensional modelsis, from the design point of view, another
complex process. These challenges are difficult to master. In general the development of big corporate datawarehouses
isan evolutionary process:. the datawarehouse is continuoudy developing, with all version-to-version management
challenges.

Let’s suppose that the data architects succeed to come up with afirst version of a data model for the datawarehouse that
can be related to the source systems and sufficiently meets the user requirements. The danger exists that after the data
model isretrieved and further versions are developed, the connection between the initial user requirements and the
definitive data model getslost. This danger rises also when a physical model isretrieved and again if dimensional
models are derived. At the end it might be a surprise that the result is no longer something that meets the user
requirements. This danger can be avoided if all model-to-model conversions are made algorithmically, keeping alive,
during these conversions, the correspondence between user requirements and data models.

2.2 A Framework for M etadata Management

In this section a framework is presented for meeting the above-mentioned challenges during datawarehouse projects by
means of proper metadata management. This Metadata Framework®” tries to conquer the version-to-version complexity
and the dangers related to the model-to-model transformation by giving the metadata of the elementary FCO-IM model
of the datawarehouse a single-point-of-definition status. All other models are derived from that in an automated way.
Theideais alayering of the datawarehouse lifecycle based on different phases of the datawarehouse development.
Jumping from one development layer to another consists in transforming the metadata at the conceptual level, whilst
continuously being able to convert it on demand to desired logical and physical platforms: Entity-Relationship, UML
and/or Relational.

Integrated tool support for the Datawarehouse Lifecycle 5

These datawarehouse development layers include Elementary M odels, Nor malized M odels and equivalent
Dimensional M odelsin the form of families of stars with conformal dimensions® that can easily be split up into a
collection of separate data marts, consisting of just one or afew related stars. All of this can be presented at a
conceptua (i.e. FCO-IM style models), logical (i.e. Entity-Relationship models and/or UML class diagrams) and
physical (i.e. Relational Schema's) level and as such be imported in logical and physical level tools.

Thisway of working also guarantees maintaining a close relationship between hard and soft semantics at any moment,
which is considered essential for running datawarehouse projects successfully. Datawarehouse users can validate the
present version of the conceptual models at any moment and assure the datawarehouse team that they are working in the
right way. On the other hand, logical and physical models fulfilling the validated business requirements and the
technical aspects of datawarehouses and data marts can be generated instantaneously, even, if desired, with preservation
of all soft semantics together with the hard semantics.

A simplified picture of the Metadata Framework, focusing on the layering from the data model perspective, isgivenin
figure7.

Figure 7: Simplified picture of the Metadata Framework

Elementary Model
of the datawarehouse

- User requirements given in elementary facts.
Nor malized M odel

of the datawarehouse

s]

Dimensional M odel
of the datawarehouse

| Facts are described by fact sentencesin
natura language that can be validated from
the users.

YA

The starting point for modeling the datawarehouse is a set of elementary facts covering al user needs concerning the
datawarehouse. These elementary facts are the source for the Elementary Model. Arrow 1 shows that the Elementary
Model can be retrieved from analyzing elementary fact expressions and the elementary fact expressions can be
regenerated from the Elementary Model.

The Normalized M odel of the datawarehouse is a more compact view of the elementary facts. The elementary fact
types are grouped together as much as possible without introducing redundancy, the resulting FCO-IM information
grammar is equivalent with an Entity-Relationship Model or Relational Schemain at least BCNF. See section 1.2.
Arrow 2 shows that the Normalized Model can be retrieved from the Elementary Model by applying the GR a gorithm
or the GLR algorithm (see section 1.1). If the facultative R (reducing) part of the algorithm it is not used, the
Conceptual Model can again be retrieved from the Normalized Model.

The Dimensional M odel of the datawarehouse consists of elementary fact types further grouped (actually overgrouped)
for getting a denormalized dimensional view in the form of adimensional FCO-IM information grammar (family of
starsin FCO-IM style) that can be unmasked to get an equivaent Entity-Relationship Model or Relational Schema as
well. Arrow 3 shows that the Dimensional Model can be retrieved from the Normalized Model by applying the
StarBridge algorithm®'®*, based on the covering forest theorem™. In the Dimensional Model redundancy isintroduced
in such away that candidate Fact Tables and related Dimension Tables are indicated. Arrow 4 shows that domain
experts at any desired moment can retrieve the elementary fact expressions in natural language for validation purposes.

Integrated tool support for the Datawarehouse Lifecycle 6

2.3 Supporting Tool-set

The Metadata Framework is supported by an FCO-IM based modeling and model-to-model conversion tool-set. From
the point of view of functionality, the tools are of two different types:

a

Decision driven modeling and model-to-model conversion at the conceptual level. Thiskind of toolsis used to
transform a conceptual model into another conceptual model, more or less based on decisions of the analyst. The
relevant tools of this type used for support of the Metadata Framework way of working are:

CaseTalk. Thisisan FCO-IM modeling tool used by the analysts to trandate the facts into diagrams by adding
structure and integrity to fact expressions and bringing them on type level in an Elementary Model (EI-1G).
Thetool is completely repository based and offers in-repository Group, Lexicalize and Reduce algorithms with
all resulting conceptual diagrams and the demasqué algorithm for the presentation of a Normalized Model
(GLR-IG) in more familiar Relational style. See section 1.

StarBridge. This FCO-IM based tool supports the analyst for retrieving a Dimensional Model (D-1G) and as
such, like CaseTalk, is an important conversion tool to support the Metadata Framework layers at the
conceptual level. Thistool takes asinput a Normalized Model (FCO-IM GR-IGD) and outputs a denormalized
Dimensional Model for the datawarehouse. Recently the FCO-IM repository was extended in order to be able
to store at the conceptual level dimensional datawarehouse models (FCO-IM D-1G’s) as well and a conversion
algorithm was specified that helps the analyst to convert a conceptual normalized model (FCO-IM GR-IG) to
an equivaent dimensional Model (FCO-IM D-IG). Thetool implements the StarBridge algorithm that consists
of severa distinct steps. See figure 8.

Supporting straightforward model-to-model demasqué conversions. These tools are used to transport the conceptual
metadata to the logical/physical platforms. For support of the Metadata Framework, the following tools are
available:

ER Bridge. Thistool provides a bridge between the FCO-IM world and the Entity-Relationship world. It
exports conceptual models (Normalized Models and Dimensional Models) to the logical/physical world of ER
tools. It realizes this by using repository-to-repository transformation: export and conversion of the metadata
of an FCO-IM Model (GR-IG) to an intermediate Entity-Relationship Repository and export from that into ER
toals.

UML Bridge. Thistool provides a bridge between the FCO-IM world and the UML world (Class Diagrams).
It realizes by using repository-to-repository transformation, the export of an FCO-IM Model (GR-1G) to an
intermediate Class Diagram Repository and export from that into UML tools.

Figure 8: StarBridge tool architecture

Nor malized M odel

Save the analyst decisions
(FCO-IM 1G)

during the use of Star Bridge

—— — ReadtheFCO-IM
R Repository

Decisionstakenby (< ——— Star Bridge
the analyst to

retrieve agiven —~

dimensional model

Automatic transformation
after decisions are accepted

Apply decisions taken by the
analyst to retrieve a given Dimensional M odel
dimensional model (FCO-IM 1G)

Export the FCO-IM
Repository

Integrated tool support for the Datawarehouse Lifecycle

Figure 9 shows how the tools are used in an integrated way in the Metadata Framework.

Figure 9: Integrated Tool Support for the Metadata Framework

Normalized M odel
(ER/Class Diagram)

Elementary Model
(FCO-IM Diagram)

ER/UML Bridge

Dimensional M odel
(ER/Class Diagram)

2.4 Tool Architecture

Even though the conversion tools are implementing different algorithms, all conversion tools are based on in-repository

N

CaseTalk User requirements given in

elementary facts.

Nor malized M odel
(FCO-IM Diagram)

Fact are described by fact
expressionsin natura
i language that can be

validated by the users.

\/

Star Bridge

7

0l

Dimensional M odel
(FCO-IM Diagram)

O

or repository-to-repository transformations. At the moment all repositories are in Relational format and the in-
repositories or repository-to-repository transformations are made by Structured Query Language (SQL). ER Bridge,

UML Bridge and Star Bridge are modules integrated in one FCO-IM Bridge tool. They receive an appropriate copy of

the populated Relational FCO-IM repository from the FCO-IM modeling tool CaseT alk.

As a consequence, the tools can be conceived as sets of queries running in a given order, and developing this kind of

tools means thinking about SQL -instructions that carry out tasks. Each instruction has properties related to them such as
name of instruction, type, body, what step of the algorithm it isinvolved in, order of execution, etc. These properties are

stored in arepository along with the instructions themselves and their descriptions. This architecture makes tool
implementation easier and helps alot for tool maintenance. Here, the idea of storage of the hard and soft semantics of
the algorithm in a consistent and redundant free way is applied again.

There are two groups of reasons for choosing a repository-based architecture for the transformations as well:

a) Reasonsrelated to the algorithms applied in the tools. What makes conversion tools different from each other isthe

algorithm implemented by them. Regarding to the implemented algorithm some reasons to use a repository is:
- Single source of algorithm logic.

- Single source of algorithm description.
- Automatic generation of the implemented a gorithm documentation.
- Easy maintenance of the implemented a gorithm.
- Generation of code for other programming language platforms.

- Thealgorithmis not part of the code and can be easily changed and maintained.

Integrated tool support for the Datawarehouse Lifecycle 8

b) Reasonsrelated to the User Interface of the tool:

- Toget an efficient tool agood terminology is required. By terminology is meant: what to call the different
operations within the tool, the different steps, the notations for parts of the algorithms (* Dimension’, ‘Do not
reduce’, etc.), the messages, the captions, etc. Most probably this differs from one language to another. For the
best notation, the best strategy is again to interview many people. If thiskind of information isstored ina
repository, every analyst can select his own notation.

- For parts of the interface that are highly dynamic, like the order of interface steps, it is convenient to keep this
information in repository. From the repository, it is much easier to impose rules on order of steps.

For running the tool logic against the tool repository, an engine is needed. This engine depends on the tool's repository
structure, but has nothing to do with the algorithm stored in the tool repository. The engine is a set of functions and
procedures that makes possible the communication between the tool logic and the tool repository and handles the
information found in the tool repository. The engine must handle the information on the algorithm stored in the tool
repository, and the tool interface. In designing of such an engine the main concern is;

- Handle any possible case that can be found in the algorithms.

- Retrieve/ update terminology used in the tool.

- Have redundant free code as much as possible.

- Usedynamic structures of functions making them reusable for different cases.

See figure 10 for the overall architecture of the tool-set.

Figure 10: The overall Architecture of the Tool-set

CaseTalk FCO-4M Bridge ERM Tool /UML Tool
FCO4M Modeling Tool (Conversion tools) (External tools)
Tool Engine

| Tool Repository|

CaseTalk
FCO-IM Repository

Extended
FCO-IM Repositories

——> ERM / Class Diagram
Repository

The CaseT alk modeling tool uses the basic FCO-IM Repository, in which the following conceptual models are stored:
elementary and grouped & reduced FCO-IM information grammars. The ER Tool Repository and UML-Class Diagram
Tool Repository are external ER or UML Tool repositories (CA Allfusion ERwin 4.1, Sybase PowerDesigner 9) where
the exported models can be stored.

At the moment, the exchange of models between the repositories of the tools is based on different techniques.

- Theexport of the models from CaseTalk to FCO-IM Bridgeis Relationa format based.

- Theexport of the models from FCO-IM Bridge to the external ER and UML toolsis based on XML document
exchange (ERwin 4.1) and VBScript generation (PowerDesigner 9). For the techniques that can be used, it is of
course relevant what the external tool offers.

In order to achieve independence from the external ER tools, a Metadata Repository Model for storing ER Modelsis
used that also supports the storage of aternative keys. Thismodel is physically implemented in the form of views on
top of the extended FCO-IM Repository. In the near future an XML Schema format will be used for supporting this
exchange. The same goes for UML-Class Diagrams.

Integrated tool support for the Datawarehouse Lifecycle 9

3 TheApproach in Practice

This section shows how the outlined approach is used in practice. Section 3.1 gives afew characteristics of the KLM
Passage datawarehouse project. In thislong term project the described approach is used and devel oped further, and the
project serves as an operational test environment for the tool-set that is continuously developing. In section 3.2 itis
demonstrated, using only asmall part of the KLM Passage Model, how the StarBridge algorithm worksin practice.

3.1 KLM Passage Model

The KLM Passage Model is a corporate datawarehouse data model for the passenger division in Royal Dutch Airlines
(KLM). Data are extracted from 5 different source systems and from the Internet.

The modeling tools used in the KLM Passage project are: CaseTalk, FCO-IM Bridge and ERwin.

The number of fact types in the conceptual Elementary Model (an FCO-IM EI-1G) is more than 600. The logical
Normalized Model (an ERD) that is generated from the conceptual Normalized Model has more than 180 entity types.
The physical Dimensional Model (family of stars with conformal dimensions) generated from the conceptual
Dimensional Model has 16 fact tables and about 37 dimension tables, whilst 177 relationships refer from the fact tables
to the dimension tables. At the moment about 13 separate data marts (each consisting of 1 or 2 stars) are loaded on a
weekly or monthly basis.

3.2 TheForecast Sub-model

From the KLM Passage Model the Forecast Sub-model is used here to demonstratehow the StarBridge a gorithm works.
Only the modeling part of the datawarehouse lifecycle is considered in this example. For simplicity (not overloading
figures) and privacy reasons, the population will not be part of diagrams.

Suppose that the analysts, after interviewing potential datawarehouse users and taking into account what data can be
provided by the source systems, come up with a set of fact expressions shown in figure 11. To be sure that no
redundancy is present, the fact expressions are elementary. They are also formulated in the desired grain.

Figure 11: Sample set of fact expressions for the Forecast Sub-model of the KLM Passage Model

"There exists a Month with Monthnumber 11."

"There exists a Month with Monthnumber 04."

"Month 04 has Monthname April."

"Month 01 has Bookmonthnumber 10."

"Month 04 has Bookmonthnumber 01."

"Period (01, 1998) belongs to Bookyear_Quarter (4, 1997/1998)."

"There exists a LineGroup with LineGroupcode A."
"LineGroup A has LineGroupname Europe.”

"A Budget is made for LineGroup A and Period (04, 1998)."
"A Budget is made for LineGroup A and Period (03, 1998)."

"The Budget for LineGroup A and Period (04, 1998) has a DiscComm_Amount of functional currency 5."
"The Budget for LineGroup A and Period (03, 1998) has a DiscComm_Amount of functional currency 6."
"The Budget for LineGroup A and Period (04, 1998) has a Gross_Turnover of functional currency 25."
"The Budget for LineGroup A and Period (03, 1998) has a Gross_Turnover of functional currency 23."

The next step isthe classification and qualification of these fact expressions. This step is executed by using the FCO-1M
modeling tool CaseTalk. Constraints are added by further interviewing domain experts. Hard and soft semantics are
automatically stored in the CaseT alk FCO-IM Repository. From the resulting conceptual Elementary Model (see figure
12) fact sentences can be regenerated for user validation.

To obtain aNormalized Model in conceptual form, these fact types are grouped together without losing the granularity
that is expressed in the fact expressions. This step is also performed by CaseTalk by applying the Group & Reduce
algorithm to the Elementary Model. See figure 12.

Integrated tool support for the Datawarehouse Lifecycle 10

Figure 12: The conceptual Elementary Forecast Sub-Model of the KLM Passage Model

Quarternimber

Bookyear_i

ear_Quarter

F6~

F8:"<16> belongs to <17>."

Num beril_of__:-Seatk ms

F3:"<4> has Bookmonthnumber ..-+---..
<5>" : X

e LineGroup_Eurlcalnd-toek
LineGroupcode

F793:"<1598> has Eurlcaind <1599>." e
LineGroupname

Lined LineGroupname-toek

105

:"The Budget for <895> has a
DiscComm_Amount of functional
currency <896>."

F444 :"The Budget for <893> has a
Gross_Turnover of functional
currency <894>."

F446 : "The Budget for <897> has a
Nett2_Turnover of functional
currency <898>."

F443 : "The Budget fgr <891> is <892>
PAX_kms."

Number} of_PAX_kms
kms-toek LnGrp_Frcst_Gross_Turnoveritoek
F449 : "The Forecast for <905> a

Grops_Turnover of functignal
currjency <906>."

F448 : "The Forecast for <903> is
<904> PAX_kms."

Tcst_DiscComm_Amount-toek

SCountCom]

909

F451 : "The Forecast for <909> has a
DiscComm_Amount of functional
currency <910>."

LnGrp_Frecst_Nett2_Turnover-toek

STTZ_Tumov]

907

F450 : "The Forecast for <907> has a
Nett2_Turnover of functional
currency <908>."

In the Normalized Model diagram the entity types LineGroup_Forecast, Period, LineGroup_Budget, Month and

LineGroup are present.

In figure 13 the Normalized datawarehouse Model is still in its conceptual shape. From the Normalized Model the fact
expressions can till be retrieved for validation purposes. To go into the logical / physical level (towards
implementation) the ER Bridge module of the FCO-IM Bridge tool can generate an ERD that can be imported in

ERwin.

Integrated tool support for the Datawarehouse Lifecycle 11

Figure 13: The Normalized Forecast Sub-Model of the KLM Passage Model in conceptual form

Line 05>,
F59 L|neGroup <1jos> has LineGroupname
" <107>."
Bookmonthr‘ﬁumber F793 : "LineGroup <105> has Eurlcalnd <1599>."

Monithnur_}nber Mopth ™. LineGroup_Budget

Gross_Turnq DiscouniCorf NettzZ_Tarno
889 | 892 | 894 1 896 1 898 888 |

ucget for <889> gnd <890> hg<888> eatkms."
dnd <890> id <R92> P}

nd <890> has a Grogs_Turn /er of functfonal currency

nd <890> has\a DisgCommy_Amount of f{inctional

nd <890> has a NettR_Tuynover of functipnal currency

F503: "A Budg t is made for 4889> and <890>.

. Quarternumber

pe— period| | v

Number of PAX kms Amount Number o S

Calendar
| 6 7 I 15.1 | 17.1 | 172 |

F4 xists a Period with <6> and Calendar_Year <7>"

F7 : "Period (<6, >) "

*F8 : "Period (<6> <7>) belongs to Booky ear_¢ Quaner (<17 1>, <17.2>)."

Quarter Cal

LineGroup forecgst

D,
rﬁe o Gross _Turnq NettZ_ Tarnof DIscounicor
902 | 901 904 | 906 1 908 I 910 r| 900 |

F447 : "The Forecast for <901> made in <902> is <900> Seatkms."
F448 : "The Forecast for <901> made in <902> is <904> PAX_kms."
F449 : "The Forecast for <901> made in <902> has a Gross_Turnov er of functional

currency <906>.

F450 : "The Forecast for <901> made in <902> has a Nett2, _Turnov er of functional
currency <908>."

F451 : "The Forecast for <901> made in <902> has a DiscComm_Amount of functional
currency <910>."

F504 : "A Forecast is made in <902> for <901>."

The next step is the conversion of the Normalized Model towards a Dimensional Model. For this purpose, the

Star Bridge module of the FCO-IM Bridge tool is used. It helps the analyst by proposing options (candidate fact tables
and dimensions, providing conformity by splitting off a mini dimension or by introducing an aggregate dimension and
so on) and it will automatically apply any decision that the analyst makes. It even helps by proposing proper decisions.
In this example, the StarBridge algorithm would suggest that LineGroup_Forecast is afact table and Period and
LineGroup_Budget are dimensions. Month and LineGroup are snowflake dimensions, which the analyst can decide to
denormalize later into respectively Period and LineGroup_Budget. In this case, the analyst by looking into the soft-
semantics (fact expressions) associated to the facts that are grouped into entity types, realizes that LineGroup_Budget
must be afact table, too. After this decision, the LineGroup is a dimension. The tree diagram would then be as shown in
left side of figure 14.

Figure 14: Trees of the Normalized Forecast Sub-Model before and after denormalizing

LineGroup_Farecast LineGroup_Budget
EI LmeGn:uup_Euu:Iget - LinelGroup
i b LineGroup - Period
El Period LineGroup_Forecast
_ - Manth - LineGroup
- Periad - Perind
+ Manth - Periad

Only Month will be denormalized into Period. The definitive model has 2 fact tables with 2 conformal dimensions. See
figure 15 right side. This model is stored in the extended FCO-IM Repository as a conceptual Dimensional Model.
From this model the initial fact expressions can still be generated automatically for validation purposes.

The next step istowards alogical / physical Dimensional Model. For this purpose the ER Bridge module of the FCO-
IM Bridgetool helps again, and the resulting logical Dimensional Model isimported into the ER tool ERwin. By
exporting the Dimensional Model to an ER tool, the analyst benefits from the features these tools offer for the further
implementation phase of the datawarehouse.

Integrated tool support for the Datawarehouse Lifecycle 12

In FCO-IM Bridge the soft semantics are first transported from the extended FCO-IM Repository into the intermediate
ER Repository and then exported to the chosen ER tool as entity types or attribute names and comments, relationship
names and role descriptions. So, the soft semantics are not lost, but are still part of the model, but no longer ina
structured shape. The Dimensinal Model in ER notation now looks as shown in figure 15. It shows two related stars
with conformal dimensions.

Figure 15: Entity-Relationship diagram showing two related stars with conformal dimensions

Period
Period_KEYID <pi> <M>
Calendar__Calendar_Year <M>
Quarternumber <M>
Quarter_Calendar__Calendar_Year <M>
Bookyear_Quarternumber <M>
Monthnumber <M>
Bookmonthnumber <M>
Monthname <M>
Book_Year <M>

LineGroup_Forecast_per_Period . .
LineGroup_Budget_Period

LineGroup_Foyecast_in_Period

\Q\eGrouprudget
LineGroup_Forecast Numbe@kzzatkms <M>
Number_of_Seatkms <M> gumbe;_of_ X_kms <m>
Number_of_PAX_kms <M> _r0$7 un vel.' . <M>
Gross_Turmover <M> DiscoyntCommission <M>
Nett2:Turnover <M> Nett2_Tumover <M>
DiscountCommission <M>

LineGroup_Budget_LineGroup

LineGroup_Forecast_LineGroup

LineGroup
LineGroup_KEYID <pi> <M>
LineGroupcode <M>
LineGroupname <M>
EUR_ICAcode571 <M>
References
1 G.P. Bakema, J.P.C. Zwart, H. van der Lek, Fully Communication Oriented NIAM, NIAM-1SDM 1994
Conference, Working Papers, pages L1-L 35, Albuquerque, New Mexico (1994), www.FCO-IM.com
2 Guido Bakema, Jan Pieter Zwart, Harm van der Lek, Volledig Communicatiegeoriénteerde
Informatiemodellering, tenHagenStam, 1996
3 G.M. Nijssen, T.A. Halpin, Conceptual Schema and Relational Database Design: a fact oriented approach,
Prentice-Hall, 1989
4 FCO-IM Casetool, Ascaris Software & FCO-IM Consultancy, 1996/1997, www.FCO-IM.com
5 CaseTalk, Bommeljé Crompvoets and partners, 2002, www.CaseTak.com
6 Peter Alons, Single point of definition voor metadata, Database Magazine, Dec 2000,www.FCO-IM.com
7 Peter Alons, Beter modelleren begint op conceptueel niveau, Database Magazine, Feb 2000,www.FCO-
IM.com
8 Ralph Kimball, The Data warehouse Toolkit, John Wiley & sons, 1996
9 Harm van der Lek, Op jacht naar de sterrren, Database Magazine, April 2000

10 Jorg Janssens, Egi Rodriguez, Extensions of FCO-1M, HAN University masters thesis, Aug 1999

11 Rob Arntz, Algorithmische transformatie van Conceptuele Modellen naar Sermodellen, HAN University /
Nijmegen university masters thesis, Aug 2000

12 Harm van der Lek, Overdekkende Bos Stelling, Database Magazine, Feb 2000

